Wednesday, 8 October 2025

Graphene Sheet Demand Forecast Using Normal Distribution

Assume Graphene Sheet Demand for last 100 days as Table 1 below.

Demand analysis and forecast for the graphene sheet based on the last 100 days of data:

🔹 Given:

  • Mean daily demand, μ=100.01\mu = 100.01

  • Standard deviation, σ=20.01\sigma = 20.01

  • Desired service level = 95%
    → which means the warehouse wants only a 5% risk of shortage.


🔹 Formula:

For a normal demand distribution, the required stock (safety stock included) for a given service level is:

                                                        Q μ × σ

Where:

  • zz = z-score corresponding to the desired service level

  • For 95% service level → z=1.645z = 1.645 (one-sided)


🔹 Calculation:


Q = 100.01 + 32.82 = 132.83

Answer:

The warehouse should prepare ≈ 133 graphene sheets to achieve a 95% service level (only 5% chance of shortage).



                                        Table 1: Graphene Sheet Demand for last 100 days


Code from ChatGPT


import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import norm


# Given parameters

mean_demand = 100.01

std_demand = 20.01

service_level = 0.95

z_value = 1.645  # z-score for 95% service level


# Calculate the stock level for 95% service level

Q = mean_demand + z_value * std_demand


# Create range of possible demand values

x = np.linspace(mean_demand - 4*std_demand, mean_demand + 4*std_demand, 500)

y = norm.pdf(x, mean_demand, std_demand)


# Plot the normal distribution

plt.figure(figsize=(8, 5))

plt.plot(x, y, label='Demand Distribution', linewidth=2)

plt.fill_between(x, y, 0, where=(x <= Q), color='skyblue', alpha=0.4, label='95% Service Area')

plt.axvline(Q, color='red', linestyle='--', linewidth=2, label=f'95% Service Level = {Q:.1f} sheets')


# Labels and title

plt.title("Graphene Sheet Demand Forecast (95% Service Level)")

plt.xlabel("Daily Demand (Sheets)")

plt.ylabel("Probability Density")

plt.legend()

plt.grid(alpha=0.3)


# Show plot

plt.show()








No comments:

Post a Comment

Machine Learning: Nearest Neighbor (NN) algorithm for stock transfers between warehouses

  🏭 Scenario: Nearest Neighbor Algorithm for Warehouse Stock Transfer Background A company, GrapheneTech , distributes graphene sheets a...