Paste this question in Grok.
Lisa is budgeting to use 12 000 units of material Graphene during the year. Production will be distributed evenly throughout the year. The company does not carry any safety (buffer) levels of inventory.
Additional information
Cost of material Graphene $60 per unit
Ordering costs $500 per order
Inventory holding costs 8% of the average inventory value per annum
Order sizes available 1 000, 1 500, 2 000 and 3 000 units
Calculate the optimum order size using the Economic Order Quantity (EOQ) formula.
Economic order quantity = √(2DS/H)= 1 581 units (1 500 order size)Graph Plotted by Grok
EOQ: 1581.14 units Total Costs for Available Order Sizes: Order Size 1000 units: Total Cost = $8400.00 Order Size 1500 units: Total Cost = $7600.00 Order Size 2000 units: Total Cost = $7800.00 Order Size 3000 units: Total Cost = $9200.00 Optimal Order Size: 1,500 units with Total Cost = $7600.00

Python Code From Grok
import numpy as np import matplotlib.pyplot as plt # Given data D = 12000 # Annual demand (units) S = 500 # Ordering cost per order ($) H = 4.80 # Holding cost per unit per year ($) # Calculate EOQ EOQ = np.sqrt((2 * D * S) / H) # Available order sizes order_sizes = [1000, 1500, 2000, 3000] # Function to calculate total cost def total_cost(Q, D, S, H): ordering_cost = (D / Q) * S holding_cost = (Q / 2) * H return ordering_cost + holding_cost # Calculate total costs for available order sizes total_costs = [total_cost(Q, D, S, H) for Q in order_sizes] # Calculate total cost for EOQ (for reference) eoq_cost = total_cost(EOQ, D, S, H) # Generate data for plotting the total cost curve Q_range = np.arange(500, 3500, 10) # Range of order quantities for smooth curve tc_values = [total_cost(Q, D, S, H) for Q in Q_range] # Plotting plt.figure(figsize=(10, 6)) plt.plot(Q_range, tc_values, label='Total Cost Curve', color='blue') plt.scatter(order_sizes, total_costs, color='red', label='Available Order Sizes', zorder=5) plt.scatter([EOQ], [eoq_cost], color='green', label=f'EOQ ({EOQ:.2f} units)', zorder=5) plt.axvline(x=1500, color='purple', linestyle='--', label='Optimal Order Size (1,500 units)', alpha=0.5) # Add labels and title plt.xlabel('Order Quantity (Q)') plt.ylabel('Total Annual Cost ($)') plt.title('EOQ and Total Inventory Cost') plt.legend() plt.grid(True) # Show plot plt.show() # Print results print(f"EOQ: {EOQ:.2f} units") print("\nTotal Costs for Available Order Sizes:") for Q, cost in zip(order_sizes, total_costs): print(f"Order Size {Q} units: Total Cost = ${cost:.2f}") print(f"\nOptimal Order Size: 1,500 units with Total Cost = ${total_costs[1]:.2f}")
No comments:
Post a Comment