Angel Ltd deals in one item of inventory, Graphene with below details around Jan 2025.
Inventory at 1 Jan, 40 units@$50
Purchase at 6 Jan, 50 units@$52
Sold on 11 Jan, 38 units
Purchase on 16 January, 45units@$48
Sold on 21 January, 58 units
Sold on 26 January, 38 Units.
Can you calculate the closing inventory at 31 January 2025 using the method FIFO?
Answer:
Closing Inventory at 31 January 2025 using FIFO = 1 unit @ $48 = $48
Graph by ChatGPT
Code by ChatGPT
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
# Dates of interest
dates = ["1 Jan", "11 Jan", "16 Jan", "21 Jan", "26 Jan", "31 Jan"]
# Total inventory value after each transaction
inventory_values = [2000, 2700, 4860, 1872, 48, 48] # Value in dollars
# Total inventory units after each transaction
inventory_units = [40, 52, 97, 39, 1, 1]
# Per-unit cost (total value / total units)
unit_costs = [v/u for v, u in zip(inventory_values, inventory_units)]
# Plotting
fig, ax1 = plt.subplots(figsize=(10, 6))
# Bar chart for total inventory value
bars = ax1.bar(dates, inventory_values, color='skyblue', label='Total Inventory Value ($)')
ax1.set_ylabel('Total Inventory Value ($)', color='blue')
ax1.set_xlabel('Date')
ax1.tick_params(axis='y', labelcolor='blue')
ax1.set_title('Inventory Value and Per-Unit Cost Over Time (FIFO Method)')
# Annotate bars with unit cost
for bar, unit_cost in zip(bars, unit_costs):
height = bar.get_height()
ax1.text(bar.get_x() + bar.get_width()/2, height + 50, f"${unit_cost:.2f}",
ha='center', va='bottom', fontsize=10, color='black')
# Line chart on secondary y-axis for per-unit cost
ax2 = ax1.twinx()
ax2.plot(dates, unit_costs, color='orange', marker='o', label='Unit Cost ($)')
ax2.set_ylabel('Unit Cost ($)', color='orange')
ax2.tick_params(axis='y', labelcolor='orange')
ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2f'))
# Add legends
fig.legend(loc='upper right', bbox_to_anchor=(1,1), bbox_transform=ax1.transAxes)
plt.tight_layout()
plt.show()
No comments:
Post a Comment